Pterin-centered radical as a mechanistic probe of the second step of nitric oxide synthase.
نویسندگان
چکیده
The enzyme nitric oxide synthase is both medically relevant and of particular interest from a basic sciences perspective due to the complex nature of the chemical mechanism used to generate NO. The enzyme utilizes multiple redox-active cofactors and substrates to catalyze the five-electron oxidation of substrate l-arginine to citrulline and nitric oxide. Two flavins, a cysteine-coordinated heme cofactor and, uniquely, a tetrahydrobiopterin cofactor, are used to deliver electrons from the cosubstrate NADPH to molecular oxygen, analogous to other P450s. The unprecedented involvement of the pterin cofactor as a single electron donor is unique among P450s and pterin utilizing proteins alike and adds to the complexity of this enzyme. In this report, the peroxide shunt with both Mn- and Fe-containing heme domain constructs of iNOS(heme) was used to characterize the formation of HNO as the initial inorganic product produced when oxygen activation occurs without pterin radical formation. To recover NO formation, preturnover of the iron-containing enzyme with l-arginine was used to generate the pterin-centered radical, followed by peroxide shunt chemistry. Comparison of NO produced by this reaction with reactions that do not undergo preturnover, do not have peroxide added, or are performed with a pterin unable to generate a radical shows NO production to be dependent on both a pterin-centered radical and activated oxygen. Finally, the chemical HNO donor, Angeli's salt, was used to form the ferrous nitrosyl in the presence of the pterin radical intermediate. Under these conditions, the rate of pterin radical decay was increased as monitored by EPR spectroscopy. In comparison to pterin that aerobically decays, the Angeli's salt treated sample is also significantly protected from oxidation, suggesting ferrous-nitrosyl-mediated reduction of the radical. Taken together, these results support a dual redox cycling role for the pterin cofactor during NOS turnover of NHA with particular importance for the proper release of NO from a proposed ferrous nitrosyl intermediate.
منابع مشابه
Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats
Objective(s):Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging a...
متن کاملTetrahydrobiopterin radical enzymology.
(6R)-5,6,7,8-Tetrahydrobiopterin (H4B) and related tetrahydropterins are cofactors for several enzymes and can be generators or scavengers of reactive oxygen species in cells. Our review will focus on pterin radical formation in enzymes, particularly in the nitric oxide synthases (NOSs, EC 1.14.13.39) where pterin radical formation is best documented. We also summarize properties of pterin and ...
متن کاملCrystal Structure of Constitutive Endothelial Nitric Oxide Synthase A Paradigm for Pterin Function Involving a Novel Metal Center
Nitric oxide, a key signaling molecule, is produced by a family of enzymes collectively called nitric oxide synthases (NOS). Here, we report the crystal structure of the heme domain of endothelial NOS in tetrahydrobiopterin (H4B)-free and -bound forms at 1.95 A and 1.9 A resolution, respectively. In both structures a zinc ion is tetrahedrally coordinated to pairs of symmetry-related cysteine re...
متن کاملInteraction between Neuronal Nitric-Oxide Synthase and Tetrahydrobiopterin Revisited: Studies on the Nature and Mechanism of Tight Pterin Binding
Recombinant neuronal nitric-oxide synthase (nNOS) expressed in baculovirus-infected Sf9 cells contains approximately 1 equiv of tightly bound tetrahydrobiopterin (BH4) per dimer and binds a second equivalent with a dissociation constant in the 10(-7)-10(-6) M range. Less is known about the pterin-binding properties of nNOS originating from expression systems such as Escherichia coli that do not...
متن کاملRole of L-NAME, a nitric oxide synthase inhibitor, in the improvement of morphine-induced amnesia induced by nicotine
Introduction: Drugs of abuse such as nicotine and morphine used systemically by addicts produce their effects via the mesolimbic dopaminergic pathway. Furthermore, evidence indicates that some behavioral effects of nicotine and morphine are mediated by nitric oxide (NO). Based on these observations, the aim of the present study was to investigate the effects of intra-nucleus accumbens (NAc) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 132 14 شماره
صفحات -
تاریخ انتشار 2010